If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2=4
We move all terms to the left:
q^2-(4)=0
a = 1; b = 0; c = -4;
Δ = b2-4ac
Δ = 02-4·1·(-4)
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4}{2*1}=\frac{-4}{2} =-2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4}{2*1}=\frac{4}{2} =2 $
| 5x-1=20x-31 | | -5x-6x=8x-x+12 | | C=2+2.14r+r | | 2/5(5x-10)=-4+2x | | q^=4 | | c13+9=14 | | -3+-4r=-2 | | -x+4/3=-1/2x-7/2 | | 6r+12=18 | | -3(x+2x)=16-x | | 3q+11=14 | | -3(x+2x)=18-x | | -4(x-3)=3x-30 | | (2x-9)=(x+5) | | 10r-8=3r^2 | | 5m+20m=-15 | | 3(x−2)=36 | | X/3+2/5=12-2x | | -9-6x=6x-4 | | -2(y+1)=3y-1+5(2y+1) | | 19-x=180 | | 0.4x80=32 | | 54/x+63/x+6=3 | | 2(-5y+2)-y=4 | | -2/6x=40 | | x3+3x2-34x-42=0 | | -5(k+4)=-(1+5k) | | 6x-1)=(5x+28 | | V=68,000+1,200(n-3) | | -n-5=12 | | -(-7-6n)=-8(1-n)-5 | | b2-2b-35=0 |